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Differeni Ways of Looking at the Electromagmetic chuum*

P.W. Milonni
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Abstract

Some thoughts on the electromagnetic vacuum are presented in connection
with the vacuum and source {ields as alternative physical bases for
understanding spontaneous emission, the Lamb shift, Casimir effects, van der
Waals forces, and the "thermalization” of vacuum fluctuations for a uniformly

accelerated observer,

“Submitted for publication {n the Proceedings of the Adriatico Research
Conference on "Vacuum in Nonrelativistic Matter-Raiiation Systems,” Trieste,

Italy, July 1987. This paper is bascd on a keynote lecture delivered at the

Conference.



And sometimes it seemed that something never
yet seen yet long desired was about to
happen, that a veil would drop from it all;
but then it passed, nothing happened, the
riddle remained unsolved, the secret spell
unbroken...and still one knew nothing
perhaps., was still waiting and listening.

- Hermann Hesse, Narcissus and Goldmund

1. The Purpose of this Essay

Field theory has taught us that vacuum is not a tranquil state of
nothingness, but rather a quantum state with fluctuations and physical
consequences. Alas, the universe {tself may have sprung from a quantum

fluctuation. I shall discuss the electromagnetic vacuum. The discussion is

arranged according to the following outline:

Einstein and the Vacuum
. Spontaneous Emission

. The Lamb Shift

2.

3

4

5. Casimir Effects

6. Van der Waals Forces
7. Cavity-Modified Spontaneous Emission
8. Two Sides of a Coin
9. Commutators

10. Accelerated Observers

11. Where Do We Stand?

Among the questions I address are the following: What evidence do we have that



vacuum fluctuations have real physical consequences? Are there different ways
of thinkinz about these effects? Is there more to be learned from the

electromagnetic vacuum?

2. Einstein and the Vacuum

It would be interesting if a historian would trace the development of our
present concept of the vacuum. It is not hard to find little examples of how
vacuum fluctuations came cluse to being uncovered before the adven: of quantum
theory. For instance, Mulliken in 1924 found that by including zero-point
energy he could get a better fit to molecular vibrational spectra. As another
example I will consider briefly a paper published by Einstein and Stern [1] in
1913, arourd the middle of Einstein’s long struggle to understand the Planck
spectrum.

The model considered by Einstein and Stern is that of Einstein and Hopf,
[2] and consists simply of dipole oscillators free to move in one dimension.
The interaction with radiation increases the kinetic energy of the dipoles,
but there is also a velocity-dependent force acting to slow down a particie
moving through the field. In equilibrium the average rates at which these two
effects change the kinetic energy must cancel, and this c¢ondition yields an

equation for the (thermal) equilibrium spectral energy density p(w). The

equation is
d 1
pv) -5 3 = g7 P(0) <HD (2.1)

where < H > i{s the average kinetic energy of a dipole oscillator of frequency
w in equilibrium, and mey be related to p(w) by the equation
2

CH> =nw cap(w)/w2 (2.2)



The solution of (2.1) is then the Rayleigh-Jeans spectrum:
p(w) = mszhr2c3 (2.3)

which appears in this way to be an inevitable consequence of classical
physincs. However, Einstein and Stern remarked that if a dipole oscillator
somehow has a zero-point (T = O) energy hw, so that < H > is replaced by (2.2)

plus ho in (2.1), then the equation for p(w) becomes

p(w) - %%5 = w2c3p(0)2/30%KT + wp(w)/3KT (2.4)
and the solution of this equation is the Planck formula.

Now it 1is not difficult to treat the Einstein-Hopf model fully quantum
mechanically, and so to understand why the Einstein-Stern ansatz works: in
quantum theory both a dipol= oscillator and a field mode of frequency w have a
zero-point energy ihw, and it turns out that the sum, (hw + (hw = ho, is just
what Einstein and Stern found would have to be added to the classical theory
to get the Planck formula. [3] Thus it appears that the zero-point energy of a
field mode (and any other harmonic oscillator) must be ihw in order for the
Planck formula to hold. Or, looked at another way, the validity of the Planck

formula implies the existence of zero-point (“vacuum") field energy.

3. Spontanegus Emission
Since in free space there are w2dw/w203 modes of the field per unit
volume in the frequency interval [w, w + dw], and each mode has a zero-point

energy ihw, there is an electromngnetic energy density



(%1% ($ho)Vdw = (hu>/2n2c%)Vdo = p_(0)Vdu (3.1)

in the frequency interval [w, w + dw] in the volume V.

Can this vacuum field affect an atom? Consider the rate of stimulated
emission in a broadband field of spectral energy density p(w). This rate for a
transition of frequency Yo is Bp(wo). where B = 4w2d2/3h2 is the Einstein B
coefficient and d 1is the transition dipole moment. Thus the stimulated
emission rate due to the vacuum field is presumably

_ 5.2 3 3 _
va = Bpo(wo) = 2d w0/3hc = 2A (3.2)

vhere A is the Einstein A coefficient for spontaneous emission.

In other words, if we are looking for physical manifestations of the
vacuum field, 1t seems that it might have something to do with spontaneous
emission — but we only get half the correct rate of spontaneous emission when
we calculate the rate of emission stimulated by the vacuum field.

Now let us take a rather different point of view about spontaneous

emission. A classical point dipole oscillator feels a radiation reaction field

Bep = (2e/3c”)a%dr® - (swe)a®ae? (3.3)

RN

vhere &m is the electromagnetic mass, and for n dipole oscillator of frequency

Yo this leads to a loss of dipole energy W due to radiation at the rate

dw/de = - (e202/3mc3)w (3.4)

To translate this into quantum theory we must "weight" (3.4) by the oscillator

2

strength f = 2md2wo/he of the transition. [4] Then we arrive at the emission



rate

R = W |aWde] = (e%62/3mc”)(2mi% /he?) = 2a%3/3nc® = 34 (3.5)

due to radiation reaction. Note that R”_ = va and that the A coefficient for

spontaneous emission is just

>
]
)

vt Rrr (3.6)

This suggests that both the vacuum fiecld and radiation reaction are important

in spontaneous emission. This inference is correct, as we will see later.

4. The Lamb Shift

An energy W = ~ 53°§. where d 1s the induced dipole moment, is associated
with a polarizable particle in an electric field E. Writing d-= a(u)fw for the
induced dipole moment, where a{w) is the polarizability, we have W - - éa(w)Ei

and, if there is a continruous distribution of field frequencies,

W= - 3 Ja(o)[ro()do] (4.1)

where we have taken Eﬁ = 4rp(w)dw.

For an atomic electron in level §, therefore, we expect the level shift
WJ = - 2r jdwaj(w)po(w) (4.2)
due to the vacuum, where aJ(w) is the polarizability ot level j. In other

words VlJ is the shift in energy -~ from the "bure" energy determined by the

Schrodinger equation without coupling to radiation - due to the vacuum field.



In other words still, WJ is the gquadratic Stark shift due to the vacuum field.

Using (3.1), and the Kramers-Heisenberg formula

a,(v) = (2/3h) 2 a3 ij(wij W) (4.3)

for the polarizability, we arrive at the expression

W, = - (2/3rc) 2 d1J " Jhww3(wfj - o2

j ) (4-4)

The limit of a free electron may be obtained by taking the transition

frequencies !wijl between electron bound states to be small compared with

photon frequencies w in (4.4):

¥ = (2/3rc2) 2 dy @, 4 Jaweo (4.5)

free

The Thomas-Reiche-Kuhn sum rule, (2m/3h)§ d . allows us to write W

free

13913 ©

= (ezh/wmc )Jhww. This is in fact just the vacuum field expectation value of

222 2

the term ¢“"A"/2mc” in the Hamiltonian. In any case W is independent of the

free

electron state J, and we therefore regard the difference W, - W as the

free

J

J

measurable level shift W, of an electron in state §:

W= W, = Wee = - (/33 ) 2 diJ 13 Jhww(wij )

= (2/3rc) 2 fJ 3 log|/w gl (4.6)



where we have introduced a cutoff frequency 2 in our nonrelativistic approach.
(Obviously the nonrelativistic theory will break down at photon frequencies w
x mc2/h.) Taking Q = mczlh. Bethe [5] estimated (4.6) for the hydrogen atom
end his estimate was in excellent agreement with the measured Lamb shift. The
fact that the "Bethe log"” (4.6) works so well implies that the Lamb shift is
basically a nonrelativistic, vacuum-field effect. [6]

Once again, however, a different approach is possible (and successful).
In deriving the Bethe lcg we began with the expression W = - 531’3 and took E

to be the vacuum electric field. Now let us forget the vacuum and use the

radiation reaction field for E. For a point dipole 3(t) this field is easily

shown to be given by gRR = gl(l;() + EI(U-%)' where [7]

t
+) 2 2 Jacdieyetalt - 9
R = (hﬂ)gi)\eib')\e-ﬁb.)\ de d(t,)e k1 (4.7)
is the positive-frequency part of ERR and EF(&) = %;)T is the

negative-frequency part. Here the sum is over all field modes for the
quantizaticn volume V, and :ﬁ.)\ is a unit polarization vector for a mode with
wave vector Kk and polarization index A (= 1,2). (We can evaluate (4.7)
explicitly and arrive at (3.3) with d-= e;c’. but instead we take a perturbative

approach that allows us to calculate a quantum level shift.) Then

t
W=~ 33y, = - Re[dE(R)] - mneﬂ%emmemn ‘({dtldm(t)c'ln(tl)eimk(tl -t

(4.8)

where m,n (= 1,2,3) label Cartesian coordinates and we follow the summation



convention for repeated indices m,n.

To carry these considerations over to quantum theory we replace

dm(t)dn(tl) in {4.8) by the expectation value (jldm(t)dn(t1)|j>. In the
approximation of unperturbed motion this is just iwjidjimdijnexp[iwji(t—tl)]
summed over a complete set of states i, [7] and so for an atom in state j the

level shift due to radiation reaction is

t
- 2 .
Wj = (2n/V) g ngwjilegk-zgjl iﬁtlsxn(wk-mji)(t1~t)
N SR
= - (2m/V) g i’z)\wk oy |ew\°3”|2 (4.9)
where we have used
t
o 1
gdtlsin(mk“wji)(tl-t) x-P (m) (4.10)

for t » |in|_1, where P denotes the Cauchy principal part implicit in (4.9).

In the mode continuum limit qz - (V/8w3) Jhsk 2 we obtain from (4.9) the
k A

expression

3 ) o o2 {} duw®
WJ:.--(2/37rC) 1wjidjio("_t_—“"j_i— (4.11)

and therefore



Q
se _wr . 2 2 2 dww
Wj = Wj wfree = - (2/3wc”) g wjidji g‘a—:—;;; (4.12)

This 1is not the Bethe log expression (4.6); one more subtraction, namely mass
renormalization. is required. This is perhaps not surprising, since we are
dealing now with the radiation reaction field, which brings in an "extra”
electromagnetic mass. The electromagnetic mass term in (3.3) implies that we

should subtract from (4.12) the energy

2

AW, = <jlp%/2m - p /o |3> = - (5m/m)<j [p>/2m| > = - (2e203m2c )< |p2 |53

J
(4.13)

in order to avoid '"double counting” the electromagnetic self-energy in our
radiation reaction approach. Here m and m are respectively the renormalizasd

and bare mass of the electron ( m = m,* ém). Thus

W= W AN = (2/3nc>) ) a2 3 log |2/, | (4.14)

3 L 131
which is precisely the Bethe expression (4.6).

What this hodgepodge of classical and quantum considerations shows is
that the main portion of the Lamb shift may also be attributed to the
radiation reaction field of the atomic electron. It should be clear by now

what I am leading up to: effects usually attributed to vacuum field

fluctuations moy instead be attributed to radiation reaction.

5. Casimir Effects

When we consider Casimir effects this alternative explanation seems at



first implausible. Such effects are typically explained in terms of changes in
the vacuum field configuraticn due to the presence of matter. These changes
result in forces between material systems such as polarizable particles or
conducting plates.

The thing that makes a source-field interpretation seem implausible at
first is that these forces depend on distances between particles and/or
plates, and we are used to thinking about radiation reaction in idealized free
space, where of course EkR doos not depend on where a particle is located. But
in general radiation does depend on where the particle 1s located.

Consider, for instance, an atom at a distance d from a perfectly

conducting plate. For the z~component of the radiation reaction field we

obtain [7]

Epp , = (2¢73c%)a%27ac® - (40/3nc®)d%2/ae® - (20/44%c)2(t-2d/c)

- (2e/8d4°)z( t-2d/c) (5.1)

This is nothing but the free-space (d = ®) result plus the retarded dipole
field from an ‘mage oatom at a distance d behind the plate. The
positive-frequency part of the source field (5.1) is

(
Eﬁ;)z = - (2e/w03) Jhww2(1/3 - coswx/w2x2 + sinwx/w3x3)

t
x gh:'i(t')e’”(t"‘) (5.2)

where x = 2d/c. Therefore fruom (4.8) the distance-dependent portion of W for

an atom in state j is



Wj(d) = - (2e2/w03)_[;iww2(cosux/w2x2 - sinux/w3x3) 3

t
Jar <glzrze)y [petelt™=0) & . (5.3)
0 A
~here ... indicates contributions from the x and y components of the atomic

dipole. In the approximation of unperturbed motion discussed just before

equation (4.9) we obtain

[
2ikd
2 2( 2 -le 2.2
A - - -
WJ(d, = e“/2ni 2 inlzJiI gdkk (ke in) seq— (21/2kd - 2/4k"d%)

+c.c. + ... (5.4)

This 1is the expression obtained by Casimir and Polder in 1948. [8] They
evaluaved (5.4) in a standard way by introducing a factor e-'Vk and then taking

the limit v = 0+ after doing the integral. This led to the Casimir-Polder

energy

¥(d) = - 3aJhc/8nd4 (5.5)
where ad is the static (w = 0) polarizability for state j. Thus, by allowing
for the position dep:ndence of radiation reaction (equation (5.1)), we can
derive the Casimir-Polder force.

¥hat about the Casimir force between two conducting plates? The approach
besed on vacuum field fluctuations considers the total field energy (ihw per
mode) when the plates are separated by a distance d, minus the energy when d -+
o, and this leads to the famous Casimir force [9]

F = -whc/480d° (5.6)



per unit area. This 1is a macroscopic approach in that it deals with field
modes satisfying boundary conditions, without treating the plates in any sort
of "atomistic" fashion. That is, the plates serve only to define the boundary
conaitions. In a similar fashion one can carry out a macroscopic source field
approach, meking no refzrence at all to the vacuum field. This has been worked
out by Schwinger, et al. within the context of Schwinger's source theory,
"where the vacuum is regarded as truly a state with all physical properties
zqual to zero." [10] The point, again, is that we can explain a "vacuum field

effect” in terms of source fields rather than vacuum fields,

6. Van der Waals Forces

In general the (Coulomb-gauge) vector potential operator may be written

in the form

~

t) = ) (2rhe?0 ) 2a_(0)F (F) + a ()] (6.1)
a

X

(

-
X

vhere the (orthonormal) mode funciions ?;(?) satiisfy the Helinholtz equatinn

22 = 22 = 2 2,2
v ?;(x) + ka?;(x) = 0, ka = wa/c . (6.2)

the transversality condition V°F;(:) = O, and the appropriate boundary
conditions for the electric and megnetic fields; ;a and ;; are the
annihilation and creation operators for mode a, and the caret (") is used to
indicate an operator.

In the presence uf sources the Heisenberg equation of motion for ua(t)

leads to the folluwing expression for the vector potential corresponding to



the radiation reaction field acting on a point particle of charge e:

~

” t
Ro(X.t) = 2wiec Zw;li’a(i’)-i’:(:‘c’) gdt'?(t')eiwa(t'-t) +he.  (6.3)

In the case of free space we have ?;(;) = V-llzgﬁxciﬁ.; , and we can evaluate
(6.3) and use E%R = - (1/0)2§R to obtain (3.3).

In the preceding section the appropriate mode functions f;(;) were those
appropriate to a half-space bounded by a perfectly conducting plane. Using
these modes, we obtain (5.1); of course we can also write (5.1) on physical
grounds, without resorting to a modal decomposition of the field.

Now for the van der Waals interaction between two atoms we are interested
in the radiation reaction field on a ground-state atom A when there 1is some
other atom B a distance d away. So we want to know how atom B affects the
modes of the field acting on A. A ground-state atom B modifies the free-space
mode functions by adding to each plane wave a dipole field due to the

scatterer:

22 33

- - o =
o oKX 4 2, oKX 3glkexp eikr[ghx(llkr + 1/k°r” - 1/k"r

epe = epe X + aB(wk)k (]

- 1 2@, DK + 31437 - 3433)) (6.4)

=3 -
X

where ;ﬁ specifies the position of atom B, T = - X and aB(w) is the
polarizability of the ground state of atom B, Using thes: modified (by atom B)
mode functions, we can calculate the randiation reaction field for atom A In
the presence of atom B, and therefore the radiative level shifts of atom A.

For the ground-state level shift of atom A we obtain just the London result



¥W(d) proportional to d—6 for d :» O, whereas for large d we obtain the retarded

van der Waals interaction propcrtional to d'-7 [8]:

W(d) = - 23hca,ay/4md’ (6.5)

where N and ay are the static polarizabilities of the atoms. Thus the van der
Waals interaction may be understood from the perspective of radiation
reaction, provided we recognize that the radiation reaction field for atom A
depends on the position and polarizability of atom B. That is, we must keep in
mind, &s in the preceding section, that the field of radiation reaction acting

a particle depends on the modal properties of the field, and consequently

on
on the electromagnetic environment of the particle.

7. Cavity-Modified Spontaneous Emission

If the radiation reaction field depends on the environment of the
emitter, then so too will the radiation rate. This means that an excited atom
near a conducting wall or inside a cavity, for example, will have a
spontaneous emission rate different from the Einstein A coefficient
appropriate to fres space.

This cavity-modified spontaneous emission has been observed
experimentally. Delightfully simple experiments by Drexhage, [11] for
instance, i{nvolved the deposition of molecular monolayers on reflecting
plates. The distance of a fluorescing molecule from the plate could be set
fairly accurately according to the number of times the plate was dipped in a
solution before the monolayer wus added. In this way the emi{ssion rate could
be monitored as a function of the diatance of the emitter from the reflecting
plate. The theory is quite simple if i{dealized conditions are assumed, and in

fact the alteration of the emission rate could be predicted using a cimple,



classical picture of a dipole oscillator near u reflecting wall.

More recent experimental work in this area of environmentally modified
spontaneous emission has been undertaken by Kleppner, [12] Haroche, [13] and
DeMartini [14] and their collaborators.

The field (6.1) is the total field. That is, aa(t) has a homogeneous
solution plus a source term. The source term is associated with radiation
reaction, whereas the homogeneous part represents the external field. The
homogenous solution must always be accounted for, because even in the absence
of an applied field there is still the vacuum field. The mode expansion (6.1)
then shows that the vacuum field, like the radiation reaction field, depends
on the mode functions E;(:l. and therefore on the atom's environment. If we
chovse to think about spontaneous emission in terms of vacuum field
fluctuations, then that environmental dependence explains cavity-modified
spontaneous emission.

This seems so obvious, and yet when Drexhage first reported his
experimental results scme theorists argued that no modification of a
spontaneous emission rate was pocsible: how could the spontaneous emission of
a photon be affected by the atom's environment, since the atom can only '"see"
its surroundings by emitting a photon in the first place? The gainsayers did
not understand very deeply what a photon is. I also recall a sentence from my
undergraduate modern physics textbook: "The transition rate for spontaneous

emission is an inherent characteristic of the atom and is not influenced by

the environment in which the atom is placed.” [!5] That sentence was decleted

in subsequent editions.

8. Two Sides of a Coin
How is it that we can explain these effectz in terms of radiation

reaction, when for nearly half a century people have successfully explained



them in terms of vacuum field fluctuations.?

The answer to this question was found independently and practically
simultaneously in 1973 by Senitzky, [16] Smith, [17] and the present author.
[17,18] The motivation for this work grew out of E.T. Jaynes' neoclassical
theory of spontaneous emission. [19] In this theory spontaneous emission was
attributed to radiation reaction, but the radiation reaction field was treated
as a classical field, and it was assumed that there is no vacuum {source-free)
field. (This is really an assumption, not an inevitable feature of classical
field theory.) Although the neoclassical theory explains some important
features of spontaneous emission, it was deficient in certain respects; for
instance, it could not account for the observed photon polarization
correlations in a three-level cascade. [20] In 1972 Ackerhalt, et al. [21]
showed that radiation reaction nevertheless offers a valid basis for
understanding spontaneous emission, provided the radiation reaction fjeld is
handled properly as a quantum—mechanical gperator. This showed that radiation
radiation was a legitimate way of understanding spontaneous emission, and the
question then was to reconcile such an interpretation with the old idea that
spontaneous emission is triggered by vacuum field fluctuations.

It was shown in the case of spontaneous emission [16,17] that the
physical interpretation suggestea by quantum electrodynamics is more or less a
consequence of the way we choose to order commuting atomic and field
operators. For instance, a normal ordering emphasizes the role of radiation
reaction, because the vacuum field does not contribute to the expectation
values of interest; this wes the case in the work of Ackerhalt, et al.
However, the role of the vacuum f{ield could be ecmphasized by using a
symmetrical ordering of atomic and field operators, for then expectation
values of vacuum:-field operators (e.g., <aat> ) are found to make explicit

contributions to the radiative decay and level shifts.



It would be inappropriate to reproduce here the algebra leading up to
this reconciliation of the vacuum and source-field interpretacions, since it

is readily available in the literature. [16-18, 22] I will just 1ljst a few

salient points:

(1) The level shifts and widths can be attributed exclusively to radiation
reaction or the vacuum field, or to linear combinations of the two.
For instance, we can say that the majc- (nonrelativistic) portion

of the Lamb shift is i parts a source-field effect and (1 - i) parts

a vacuum field effect.

(2) There is no ordering that attributes the radiative decay of a level

entirely to the vacuum field.

(3) All these interpretational results rest on the usual sort of weak-

coupling approximations used in the quantum theory of decaying states.

(4) These results are obtained in the Heisenberg picture, where questions
of physical interpretion are most conveniently addressed by analcgy
with classical theory. In the Schruodinger picture on the other hand,

one can calculate the same things but the physical interpretation is

less amenable to classical-like interpretations.

(6) The vacuum field and radiation reaction may be regarded in a sense rs
"two sides of the same coin." [16] There is an underlying reason for
this intimate connection, namely a fluctuation~dissipation

relation that can be expressed in terms of commutation relations.



We now turn our attention to the last point.

9. Commutators

The intimate connection between radiation reaction and the vacuum field
may be traced to the fact that the vacuum spectral energy density po(w) goes
as the third power of w (equation (3.1)), while the radiation reaction field
goes as the third derivative of X after mass renormalization (equation (3.3)).
This in turn is due to the fact that both fields derive from the same mode
expansion (6.1). (In principle, of course, a mode expansion is unnecessary,
but that’s beside the point i v our discussion here.)

Indeed this kinship is required for the very consistency of the quantum

theory of radiation. Consider the Heisenberg equation of motion for a

nonrelativistic electron in free space:

a%/dt? - 2d®wae® = (e/m)E, (9.1)
where v = 2e2/3mc3 and Eo is the "vacuum" electric field operator, 1i.e., the

homogeneous solution of the Maxwell (Heisenberg) equation for the electric

field strength. Writing Eo(t) as a sum over all field modes, and then solving

for ;(t). it is easily shown that (7]

[x(t).p(t)] = (8721/3m) fdupo(w)/[u:’(x + v2%)] = b (9.2)
0

This result is no surprise, but it puts in.o sharper focus the kinship of the
vacuum and source fields. If ERR varied as d;/dt instead of da;/dta. for

instance, then po(w) would have to be proportional to w instead of w3 to

maintain the canonical commutation relation between x and p.



In fact this may be understood from the general luctuation-dissipation
theorem [20] for linearly dissipative systems. [7, 21] Indeed we can derive
the (T = 0) fluctuation-dissipation relation ia general by demanding the
preservation of canonical commutation rules in the presence of a dissipative
(fluctuating) force. Whichever way we look at it, the intimate relation
between Eo and ERR is required for the logical consistency of the quantum
theory of matter-field interactions. The work reported in References [16 - 18]
was in a sense a rediscovery, in a sp=zific  context, of the
fluctuation-dissipation connection. Incidentally this <onnection makes it
clear that {f the vacuum field depends on the electromagnetic environment,
then s0 too must the radiation reaction if commutators are to be preserved
everywhere.

(Recently it has been written that some "falss &isumptions” have been
made in the evaluation of [;. ;] from the equation of motiun of an electron in
the field ﬁo + ERR’ [23] The objection appears to center on my ignoring the
homogeneous solution, ;hom‘ of (9.1) in calculating (9.2). Being aware of the
fact that the solution of a differential equation iu composed of a homogeneous
part and an inhomogeneous part, I wish to note here that the important
assumption is the independence of ;hom and Eo' Under this asasumption
c;hom' ﬁo] is identically zero and it is easy to show then that [;(t). ;(t)]
is equal to (9.2). In any case the consideration of ;hom in no way affects the

fluctuation-dissipation counection.)

10. Accelerated Observers
An atom in a thermal field characterized by a temperature T has its
radiative level widths and shifts modified from their zero-temperature values.

For instance, the spontaneous emission rate for a trargsition of frequency W,

becumes



A’ = A(2n + 1) (10.1a)

-1

n = (eMKT - 1) (10.1b)

n = (e

where A is the usual (T = O0) emission rate. This temperature effect is
negligible for practical purposes because n is very small at optical
frequencies.

Now vwhen a physical system is uniformly accelerated in vacuum it acts as

if {t were immersed in a ther th at temperature [24]
Ta = ha/2wrkc (10.2)

whzre a is the (constant) acceleration re'ative to an inertial frame and k 1is
Boltzmann's constant. This remarkable effect has been examined in detail by
Sciama, et al., [25] and has been elucidated from the standpoint of random
electrodynamics by Boyer. [26] Based on this result we might expect that for a

uniformly accelerated atom the spontaneous emission rate becomes

A* = A(2n_ + 1) (10.3a)
n, = (e™/%Ta - 1) (10.3b)

Let us now see what we get by doing a calculation.
Consider a two-state atom coupled to the electromagnetic field through
the interaction —er*E. The Heisenberg equations of motion for the two-state

transition cperators o and o, are [27]



5(¢) = - 10 0(1) - (1/h)uj[82(t)§§*)(t) + Eg—)(t);z(t)] (10.4)

5,00 = - (2u/mu (B ) (o) - o' (R (0] . (10.5)
where ;Z is the transition dipole moment and E(+)(t) and E(_)(t) are
respectively the positive- and negative-frequency parts of the total (free
field plus source) electric field operator. In writing (10.4) and (10.5) we
have normally ordered these operators and made the ‘rotating-wave
approximation” of neglecting terms such as ;E(+). which corresponds to the

simultaneous lowering of both atomic and field excitation. We have the

following expression for E§+)(t). with ﬁg-) = ﬁ§+)(t)T:
ﬁ§+)(:) - Eiz)(t) + Egt)(t) (10.6)

where Eo is the vacuum electric field operator and Es is the field due to the

source (atom):
t
EM(o) = (1742 JPwens (5, , - kK Ay acto(ey + o' (rr)1el0E )
3 TRy
(10.7)

For present purposes it is convenient to cast (10.7) in a somewhat

different form:

t
ﬁg;)(t) . (1/n)ui£h:°3x(t')<E§I’(:)Eg3)(c')> (10.8)

~ At

vhere Oy ¥ o+ 0 and the expectation value on the right refers to the vacuum



state of the field. (The atomic state is arbitrary because Egj)(t) does not

act on atomic states.) Since
£(+) = ()ey -
Eoj (t) |vac> = (vaclEoJ (t) =0 (10.9)

we can write (10.8) equivalently as

t
o~ + 14 "\ ’ 2 T »
Egj)(t) = {1/B)p, E[dt 0, (£ )<Eg (£)E, ((£7)> (10.10)

Of course Eo(t) is actually the source-free electric field operator Eo(zlt) at
the coordinate X = O of the atom, which is taken as a point object in the

usual electric~dipole approximation we are employing. Thus

t
~ + '& , A~ -~ .
Egj)(t) = (1/h)u, gdc 0, (t')<E (0. t)E (0. t")> (10.11)

This equation relates the source field to the free-field correlation function

e S ———————— A —— i — —

vacuum field!

Equations (10.4) - (10.6) and (10.11) have no known exact solution. In
one form or other virtually all treatments use some variant of the original

Weisskopf-Wigner approximation. In the present formulation this amounts to the

replacement

;(t') - G(t)e"i‘"o(""‘) (10.12a)

al(ey »at(t)el¥ (1) (10.12b)



in the integral over t' in (10.7); this approximation derives from (10.4)
under the assumption of weak (compared with hwo) atom-field coupling. Using
(10.12) in (10.11), we have

t
EC (0 = (1 o(e) gdcxfsoi(o.c)ﬁoj(o.t')>e““’o“"‘) (10.13)

in the rotating-wave approximation, and from (10.4) and (10.9) it then follows

that

t
G(t)> 2 - fo<a(t)> - (uiujlhz)<3(t)> ght'<ﬁoi(o.t)ﬁoj(o.t')>e"“o("‘t)

(10.14)

From this we may identify, within the Weisskopf-Wigner approximation, the

spontaneous decay rate

t
A= Idt'D(t'—t)cosmo(c'~t) (t » =) (10.15)
0
where
D(t'-t) = (ZMiMJ/h2)<E°1(O.t)E(O.t')) (10.16)

For our purposes it will simplify things somewhat to use the correlation

function of the vector potential operator and write



D,(t'~t) = (zuiuj/h%z)(ﬁoi(o.t)Koj(o.t'p (10.17)

instead of (10.16) in (10.15). (This leads to a simplification of the algebra
below.)

Now

D(t-t) = G(X'.t": X.t)2_ = (10.18)

where

G(X'.t'; %.t)

o
L) '_ d“_q
(,L"w2/31rh02)Re[fdueiu(t £) sinwlf ij/c ]
() 0 1x"=x]|

- (22r3me?) [(1-0)? - R R)sePy! (10.19)

I have replaced a sum over polarizations by an effective value for simplicity
(and without intending this to be a fully rigorous or complete calculation).
Consider now un atom undergoing uniform acceleration relative to an

inertial frame in which it is instantaneously at rest. Its acceleration in the

(inertial) lab frame is given by

2,2

dv/dt = a(l - vorc2)d/2

) (10.20)

For constant acceleration a, the velocity v and position x in the lab frame
follow from (10.20) by simple integrations. We can also obtain the time t in
the lab frame from the relation dr = dtvl - v3/c? for the proper time

interval dr. The result of these manipulations s the parametrization



t(1) = (c/a)sinh(at/c) (10.21a)
x(T) = (c2/a)cosh(aT/c) . (10.21b)

if we choose t(t = 0) = 0 and x(v = 0) = c2/a for this so-called hypervolic

motion. Equations (10.21) imply
[(t'-t)2 - [R'-R|%717! = (@%/c®)eschla(r’~T)/2¢] (10.22)

Now for an atom in hyperbolic motion we write (10.15) as
-]

A' = JhT'DA(T'—T)cosw (v'-71) (10.23)
0 o

and use (10.18), (10.19), and (10.22):

222
- (b

A’ a
1)

/3whc5) JAT'Cschz[a(T'-T)/ZCJCOSMO(T'-T) (v =@ =)
0

(4u2w2/3hc3)coth(wcuo/a) ® Acoth(wcwo/a) = Acoth(hw°/2kTa)

A(2n, + 1) (10.24)

wvhich is precisely (10.3). That 1is, the pspontpneous emission rate of a
uniformly accelerated atom is as if the atom were in @ therma] field of
temperature Ia = ho/2nke.

If we think of spontancous emission as a consequence of vacuum field

fluctuations, we can interpret this result as follows: for an occelernted



observer the quantum vacuum fluctuations are “promoted” to the level of "real"
thermal fluctautions. [25]

¥hen ther- is no acceleration the atom does not absorb energy from the
vacuuia because the vacuum field fluctuations are effectively cancelled by
radiation reaction. [22] For an accelerated atom this balance is broken and

there is absorption from the vacuum - to the extent that the atom reaches a

Boltzmann distribution at temperature Ta'

11. Where Do ¥e Stand?

Velton in 1948 stated that spontaneous emission "can be thought of as
forced emission taking place under the action of the fluctuating [vacuum]
field." ([6] Over and over again one finds simjlar remarks in the literature.

[28] Yet if we take this idea seriously and calculate the emission rate due to

the vacuum field in a naive sort of wﬁy. we find only half the Einstein A
coefficient. (Section 3} Furthermore this picture offers no explanation as to
why there is no spontaneous absorption from the vacuum field. [22]

An older and more classically motivated interpretation of spontaneous
emission attributes this phenomenon to radiation reaction. [29] The idea, more
or less, is that spontaneous emission is simply a consequence of the fact that
oscillating dipoles radiate. But we cannot use ¢lassical electrodynamics here
- we get erroneous results if we do. [22] For this reason, perhaps, the
vacuum-field interpretation eventually won out,

The 1idea that spontaneoun emission may be attributed to the vacuum
electromegnetic field has also been criticized by Cinzburg - beginning in 1039
[30) and then again in 1983. [31] In particular, he refers to the "1/2
discrepancy” noted earlier. He also notes, as the present author has on
severnl occasions, [22] that an unobjectionable explanation of spontancous

emission was given by Fermi in his {mportant review article in 1932. [}2]



Quoting Ginzburg, "Spontaneous radiation sppears because the state in which a
mechanical subsystem (an atom, a moving charge, etc.) is at some level ... but
the radiation field ... 1s absent, is not a stationary eigenstate of the
complete system (the mechanical subsystem + the electromagnetic field).” (In
connection with his 1939 articles on the nature of spontaneous emission,
Ginzburg writes that, "These articles were the first ones I ever wrote, and
naturally the memory of them as a first love in theoretical physics stimulated
me to a significant degree after four decades to write the present note."
[31])

I belijeve it is fuir to say that since 1973 we have had a more
sophisticated understanding of why spontaneous emission occurs. We now
understand in what sense the two older physical interpretations of spontaneous
emission were valid, and we can extend the newer interpretation to other
"vacuum-field eoffects,” such as van der Waals forces.

From this and other problems in quantum optics we have come tco better
appreciate the important differences between pozitive- and negative frequency
parts of the field in classical and quantum electrodynamics. If we always use
a symmetric ordering of these operators we can see clearly, for instance, why
the classical theory of random electrodynamics [33] has enjoyed considerable
success. [22] Various other orderings give different weights to the vacuum and
source fields when we try to {interpret the results of 8 ecalculation. To
emphasize as much as possible the classical-like aspects of the vacuum and
source fields, we can choose a symmetric ordering at every etoge of n
calculation. [34]

Fron another point of view all of this is unimportant because we can
calculate whatever we need in the Schriidinger or interaction picture, where we
are relatively safe from questions of classical-like, intuitive interpretions

of spontaneous emission, van der Wanls forces, etc. Since [ respect that



philosophy but do not myself subscribe to it, I will not discuss it further
here.

On the experimental side, it is not possible to distingugsh between
"vacuum” and "source"” effects in this context. What is important, of course,
is that these effects are real. However, I should point out that the
experimental data for the Casimir force between two plates may not be as
conclusive as some of us had thought. Zajonc [35] has noted that the data from
Sparnaay's experiments {[36] are in better agreement with the London-van der
Waals force (d-a) than the Casimir (qu). He plans to perform such experiments
with greater precision.

Is there anything more to be learned, really, about the vacuum
electromagnetic field? Obviously 1t would be presumptuous of me to offer an
answer to that question. I will instead suggest that these ideas may provide
useful 1intuitive guides in QCD, where Casimir-type effects have recently been

of some interest In connection with quark confinement.
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